If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2-20p-30=0
a = 10; b = -20; c = -30;
Δ = b2-4ac
Δ = -202-4·10·(-30)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-40}{2*10}=\frac{-20}{20} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+40}{2*10}=\frac{60}{20} =3 $
| 12.2x+19.4=-27x+93.9 | | -1w-11=2w-2 | | 9n+4n=2n-15 | | 22r-8=32 | | -c-8=7-6c | | 7x-7x=16+2x | | b/3+7=10.2 | | 12.2z+19.4=-27z+93.9 | | 175m-75m+57000=61200-200m | | n2− 11=–7 | | –4u=4−5u | | 218-6x+4=30-3x | | 22r-22=32 | | 8(x-8)-2=19x-198 | | 5t=-3+2t | | 95=8m+3(5-8m) | | M(x)=4+15(x)=7 | | -6+x+6=3x-1 | | -15=7x-2x | | 0=-3x2–18x-26 | | -1.82+2u=2.18 | | 2s-2=1.4 | | 5x-10=209 | | -2(2x-9)=18 | | -13=w/3-17 | | (Z-6)-z=-10 | | 175-75m+57000=61200-200m | | 0.3x+0.5=0.9x-3.7 | | 6t-3t=3t | | -11.68=-7+4s | | 5x+8x=185 | | 1/4x-10=9 |